Skip to main content

Click "Menu" to toggle open, click "Menu" again to close

Big-Data Analysis vs. Meta-Analysis

In this seminar presented by the Department of Epidemiology & Biostatistics, we will discuss a linkage between the big-data analysis and the classical meta-analysis. In data-rich big-data analysis, a commonly used approach is the so-called “Divide-and-Recombine”, which is linked with the classical “data-poor” statistical meta-analysis. We review the classical fixed-effects and random-effects meta-analysis methods and further discuss the relative efficiency under a general likelihood inference setting.

Guest Speaker
Dr. Ding-Geng (Din) Chen

Executive Director and Professor in Biostatistics
College of Health Solutions, Arizona State University

*This talk is based on the publication: Chen, D.G, Liu, D., Min, X. and Zhang H. (2020). Relative efficiency of using summary and individual information in random-effects meta-analysis. Biometrics, 76(4): 119- 1329. (

Zoom link:
Passcode: Bias2022

Event Details

Event Date:

Wednesday, January 26, 2022 - 12:00 pm to 12:50 pm

Event Location:

Online Event

Contact Information:

Idaly Balbastro

Contact Email:

The University of Arizona red triangle graphic